>>Физика: Период и частота обращения

Равномерное движение по окружности характеризуют периодом и частотой обращения.

Период обращения - это время, за которое совершается один оборот.

Если, например, за время t = 4 с тело, двигаясь по окружности, совершило n = 2 оборота, то легко сообразить, что один оборот длился 2 с. Это и есть период обращения. Обозначается он буквой Т и определяется по формуле:

Итак, чтобы найти период обращения, надо время, за которое совершено п оборотов, разделить на число оборотов .

Другой характеристикой равномерного движения по окружности является частота обращения.

Частота обращения - это число оборотов, совершаемых за 1 с. Если, например, за время t = 2 с тело совершило n = 10 оборотов, то легко сообразить, что за 1 с оно успевало совершить 5 оборотов. Это число и выражает частоту обращения. Обозначается она греческой буквой V (читается: ню) и определяется по формуле:

Итак, чтобы найти частоту обращения, надо число оборотов разделить на время, в течение которого они произошли.

За единицу частоты обращения в СИ принимают частоту обращения, при которой за каждую секунду тело совершает один оборот. Эта единица обозначается так: 1/с или с -1 (читается: секунда в минус первой степени). Раньше эту единицу называли "оборот в секунду", но теперь это название считается устаревшим.

Сравнивая формулы (6.1) и (6.2), можно заметить, что период и частота - величины взаимно обратные. Поэтому

Формулы (6.1) и (6.3) позволяют найти период обращения Т, если известны число n и время оборотов t или частота обращения V . Однако его можно найти и в том случае, когда ни одна из этих величин неизвестна. Вместо них достаточно знать скорость тела V и радиус окружности r, по которой оно движется.

Для вывода новой формулы вспомним, что период обращения - это время, за которое тело совершает один оборот, т. е. проходит путь, равный длине окружности (l окр = 2 П r, где П ≈3,14- число "пи", известное из курса математики). Но мы знаем, что при равномерном движении время находится делением пройденного пути на скорость движения. Таким образом,

Итак, чтобы найти период обращения тела, надо длину окружности, по которой оно движется, разделить на скорость его движения.

??? 1. Что такое период обращения? 2. Как можно найти период обращения, зная время и число оборотов? 3. Что такое частота обращения ? 4. Как обозначается единица частоты? 5. Как можно найти частоту обращения, зная время и число оборотов? 6. Как связаны между собой период и частота обращения? 7. Как можно найти период обращения, зная радиус окружности и скорость движения тела?

Отослано читателями из интернет-сайтов

Сборник конспектов уроков по физике, рефераты на тему из школьной программы. Календарно тематическое планирование. физика 8 класс онлайн, книги и учебники по физике. Школьнику подготовиться к уроку.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Понятие частоты и периода периодического сигнала. Единицы измерения. (10+)

Частота и период сигнала. Понятие. Единицы измерения

Материал является пояснением и дополнением к статье:
Единицы измерения физических величин в радиоэлектронике
Единицы измерения и соотношения физических величин, применяемых в радиотехника.

В природе нередко встречаются периодические процессы. Это означает, что какой-то параметр, характеризующий процесс, изменяется по периодическому закону, то есть верно равенство:

Определение частоты и периода

F(t) = F(t + T) (соотношение 1), где t - время, F(t) - значение параметра в момент времени t, а T - некая константа.

Понятно, что если верно предыдущее равенство, то верно и такое:

F(t) = F(t + 2T) Так что, если T - минимальное значение константы, при котором выполнено соотношение 1, то будем называть T периодом

В радиоэлектронике мы исследуем силу тока и напряжение, так что периодическими сигналами будем считать сигналы, для напряжения или силы тока в которых верно соотношение 1.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Еще статьи


Как выбрать частоту работы контроллера и скважность для пуш-пульного преобразова...

Растягиваем диапазон регулировки. Способы точно настроить....
Приемы растягивания диапазона регулировки, обеспечения точной настройки...

Полевой транзистор, КМОП микросхема, операционный усилитель. Монтаж, у...
Как правильно припаять полевой транзистор или КМОП микросхему...

Автоматическое регулирование, поддержание температуры теплоносителя от...
Усовершенствованный термостат отопительного котла, экономящий энергию....

Датчик, индикатор горения, пламени, огня, факела. Поджиг, запал, искро...
Индикатор наличия пламени, совмещенный с запалом на одном электроде...

Обратноходовый импульсный преобразователь напряжения. Силовой ключ - б...
Как сконструировать обратноходовый импульсный источник питания. Как выбрать мощн...

Микросхема 1156ЕУ3, К1156ЕУ3, КР1156ЕУ3, UC1823, UC2823, UC3823. Анало...
Описание микросхемы 1156ЕУ3 (UC1823, UC2823, UC3823) ...


Квантовомеханического состояния имеет физический смысл энергии этого состояния, в связи с чем система единиц часто выбирается таким образом, что частота и энергия выражаются в одних и тех же единицах (иными словами, переводный коэффициент между частотой и энергией - постоянная Планка в формуле E = h ν - выбирается равным 1).

Глаз человека чувствителен к электромагнитным волнам с частотами от 4⋅10 14 до 8⋅10 14 Гц (видимый свет); частота колебаний определяет цвет наблюдаемого света. Слуховой анализатор человека воспринимает акустические волны с частотами от 20 Гц до 20 кГц . У различных животных частотные диапазоны чувствительности к оптическим и акустическим колебаниям различны.

Отношения частот звуковых колебаний выражаются с помощью музыкальных интервалов , таких как октава , квинта , терция и т. п. Интервал в одну октаву между частотами звуков означает, что эти частоты отличаются в 2 раза , интервал в чистую квинту означает отношение частот 3 ⁄ 2 . Кроме того, для описания частотных интервалов используется декада - интервал между частотами, отличающимися в 10 раз . Так, диапазон звуковой чувствительности человека составляет 3 декады (20 Гц - 20 000 Гц ). Для измерения отношения очень близких звуковых частот используются такие единицы, как цент (отношение частот, равное 2 1/1200) и миллиоктава (отношение частот 2 1/1000).

Энциклопедичный YouTube

    1 / 5

    ✪ В чём разница между НАПРЯЖЕНИЕМ и ТОКОМ

    ✪ Легенда о 20 Гц и 20 кГц. Почему такой диапазон?

    ✪ 432 Гц ремонт ДНК, очистка чакр и ауры. Изохронные ритмы.

    ✪ ЭНЕРГИЯ И ЧАСТОТА ВИБРАЦИИ- НОВАЯ ИГРОВАЯ ПЛОЩАДКА ДЛЯ РАЗУМА.

    ✪ Как за 10 минут повысить частоту вибраций своего тела Исцеление с помощью вибраций Тета хилинг, мед

    Субтитры

Мгновенная частота и частоты спектральных составляющих

Периодический сигнал характеризуется мгновенной частотой, являющейся (с точностью до коэффициента) скоростью изменения фазы, но тот же сигнал можно представить в виде суммы гармонических спектральных составляющих, имеющих свои (постоянные) частоты. Свойства мгновенной частоты и частоты́ спектральной составляющей различны .

Циклическая частота

В случае использования в качестве единицы угловой частоты градусов в секунду связь с обычной частотой будет следующей: ω = 360°ν .

Численно циклическая частота равна числу циклов (колебаний, оборотов) за 2π секунд. Введение циклической частоты (в её основной размерности - радианах в секунду) позволяет упростить многие формулы в теоретической физике и электронике. Так, резонансная циклическая частота колебательного LC-контура равна ω L C = 1 / L C , {\displaystyle \omega _{LC}=1/{\sqrt {LC}},} тогда как обычная резонансная частота ν L C = 1 / (2 π L C) . {\displaystyle \nu _{LC}=1/(2\pi {\sqrt {LC}}).} В то же время ряд других формул усложняется. Решающим соображением в пользу циклической частоты стало то, что множители 2π и 1/(2π ), появляющиеся во многих формулах при использовании радианов для измерения углов и фаз, исчезают при введении циклической частоты.

В механике при рассмотрении вращательного движения аналогом циклической частоты служит угловая скорость .

Частота дискретных событий

Частота дискретных событий (частота импульсов) - физическая величина, равная числу дискретных событий, происходящих за единицу времени. Единица частоты дискретных событий - секунда в минус первой степени (русское обозначение: с −1 ; международное: s −1 ). Частота 1 с −1 равна такой частоте дискретных событий, при которой за время 1 с происходит одно событие .

Частота вращения

Частота вращения - это физическая величина, равная числу полных оборотов за единицу времени. Единица частоты вращения - секунда в минус первой степени (с −1 , s −1 ), оборот в секунду. Часто используются такие единицы, как оборот в минуту, оборот в час и т. д.

Другие величины, связанные с частотой

Единицы измерения

В системе СИ единицей измерения является герц. Единица была первоначально введена в 1930 году Международной электротехнической комиссией , а в 1960 году принята для общего употребления 11-й Генеральной конференцией по мерам и весам , как единица СИ. До этого в качестве единицы частоты использовался цикл в секунду (1 цикл в секунду = 1 Гц ) и производные (килоцикл в секунду, мегацикл в секунду, киломегацикл в секунду, равные соответственно килогерцу, мегагерцу и гигагерцу).

Метрологические аспекты

Для измерения частоты применяются частотомеры разных видов, в том числе: для измерения частоты импульсов - электронно-счётные и конденсаторные, для определения частот спектральных составляющих - резонансные и гетеродинные частотомеры, а также анализаторы спектра . Для воспроизведения частоты с заданной точностью используют различные меры - стандарты частоты (высокая точность), синтезаторы частот , генераторы сигналов и др. Сравнивают частоты компаратором частоты или с помощью осциллографа по фигурам Лиссажу .

Эталоны

Для поверки средств измерения частоты используются национальные эталоны частоты. В России к национальным эталонам частоты относятся:

  • Государственный первичный эталон единиц времени, частоты и национальной шкалы времени ГЭТ 1-98 - находится во ВНИИФТРИ .
  • Вторичный эталон единицы времени и частоты ВЭТ 1-10-82 - находится в СНИИМ (Новосибирск).

Вычисления

Вычисление частоты повторяющегося события осуществляется посредством учета количества появлений этого события в течение заданного периода времени . Полученное количество разделяется на продолжительность соответствующего временного отрезка. К примеру, если на протяжении 15 секунд произошло 71 однородное событие, то частота составит

ν = 71 15 s ≈ 4.7 Hz {\displaystyle \nu ={\frac {71}{15\,{\mbox{s}}}}\approx 4.7\,{\mbox{Hz}}}

Если полученное количество отсчетов невелико, то более точным приемом является измерение временного интервала для заданного числа появлений рассматриваемого события, а не нахождение количества событий в пределах заданного промежутка времени . Использование последнего метода вводит между нулевым и первым отсчетом случайную ошибку, составляющую в среднем половину отсчета; это может приводить к появлению средней ошибки в вычисляемой частоте Δν = 1/(2 T m ) , или же относительной погрешности Δν /ν = 1/(2v T m ) , где T m - временной интервал, а ν - измеряемая частота. Ошибка убывает по мере возрастания частоты, поэтому данная проблема является наиболее существенной для низких частот, где количество отсчетов N мало.

Методы измерения

Стробоскопический метод

Использование специального прибора - стробоскопа - является одним из исторически ранних методов измерения частоты вращения или вибрации различных объектов. В процессе измерения задействуется стробоскопический источник света (как правило, яркая лампа, периодически дающая короткие световые вспышки), частота работы которого подстраивается при помощи предварительно откалиброванной хронирующей цепи. Источник света направляется на вращающийся объект, а затем частота вспышек постепенно изменяется. Когда частота вспышек уравнивается с частотой вращения или вибрации объекта, последний успевает совершить полный колебательный цикл и вернуться в изначальное положение в промежутке между двумя вспышками, так что при освещении стробоскопической лампой этот объект будет казаться неподвижным. У данного метода, впрочем, есть недостаток: если частота вращения объекта (x ) не равна частоте строба (y ), но пропорциональна ей с целочисленным коэффициентом (2x , 3x и т. п.), то объект при освещении все равно будет выглядеть неподвижным.

Стробоскопический метод используется также для точной настройки частоты вращения (колебаний). В этом случае частота вспышек фиксирована, а изменяется частота периодического движения объекта до тех пор, пока он не начинает казаться неподвижным.

Метод биений

Все эти волны, от самых низких частот радиоволн и до высоких частот гамма-лучей, принципиально одинаковы, и все они называются электромагнитным излучением. Все они распространяются в вакууме со скоростью света .

Другой характеристикой электромагнитных волн является длина волны . Длина волны обратно пропорциональна частоте, так что электромагнитные волны с более высокой частотой имеет более короткую длину волны, и наоборот. В вакууме длина волны

λ = c / ν , {\displaystyle \lambda =c/\nu ,}

где с - скорость света в вакууме. В среде, в которой фазовая скорость распространения электромагнитной волны c ′ отличается от скорости света в вакууме (c ′ = c/n , где n - показатель преломления), связь между длиной волны и частотой будет следующей:

λ = c n ν . {\displaystyle \lambda ={\frac {c}{n\nu }}.}

Ещё одна часто использующаяся характеристика волны - волновое число (пространственная частота), равное количеству волн, укладывающихся на единицу длины: k = 1/λ . Иногда эта величина используется с коэффициентом 2π , по аналогии с обычной и круговой частотой k s = 2π/λ . В случае электромагнитной волны в среде

k = 1 / λ = n ν c . {\displaystyle k=1/\lambda ={\frac {n\nu }{c}}.} k s = 2 π / λ = 2 π n ν c = n ω c . {\displaystyle k_{s}=2\pi /\lambda ={\frac {2\pi n\nu }{c}}={\frac {n\omega }{c}}.}

Звук

Свойства звука (механических упругих колебаний среды) зависят от частоты. Человек может слышать колебания с частотой от 20 Гц укладываются в диапазон от ноты 50 Гц . В Северной Америке (США, Канада, Мексика), Центральной и в некоторых странах северной части Южной Америки (Бразилия, Венесуэла, Колумбия, Перу), а также в некоторых странах Азии (в юго-западной части Японии, в Южной Корее, Саудовской Аравии, на Филиппинах и на Тайване) используется частота 60 Гц . См. Стандарты разъёмов, напряжений и частот электросети в разных странах . Почти все бытовые электроприборы одинаково хорошо работают в сетях с частотой 50 и 60 Гц при условии одинакового напряжения сети. В конце XIX - первой половине XX века, до стандартизации, в различных изолированных сетях использовались частоты от 16, хотя увеличивает потери при передаче на большие расстояния - из-за ёмкостных потерь , роста индуктивного сопротивления линии и потерь на

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т .

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока .

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока . Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f , то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .

? = 6,28*f = 2f

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.


Резонансный метод измерения частот.

Метод сравнения частот;

Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.


Более подробно о частоте переменного тока Вы можете узнать из видео:

Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.

Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.

Способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.

Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.

Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же этих биений достигает нуля, то измеряемая становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.

Ещё одно интересное видео о частоте переменного тока: