ПЗУ – память, информация в которой, будучи однажды записанной, изменению не подлежит. Например, программа загрузки в ОЗУ микропроцессорной системы информации из внешней памяти. Все типы ПЗУ используют один и тот же принцип построения схемы. Информация в ПЗУ представляется в виде наличия или отсутствия соединения между шинами адреса и данных.

Условное графическое обозначение ПЗУ представлено на рис.26.10.

Рис.26.10. Условное графическое обозначение ПЗУ

Рис. 26.11. Схема ПЗУ

На рис. 26.11 приведена схема простейшего ПЗУ. Для реализации ПЗУ достаточно использовать дешифратор, диоды, набор резисторов и шинные формирователи. Рассматриваемое ПЗУ содержит разрядных слова, т.е. его общий объем составляет 32 бит. Количество столбцов определяет разрядность слова, а количество строк – количество 8 разрядных слов. Диоды устанавливаются в тех местах, где должны храниться биты, имеющие значение логического «0» (дешифратор подает 0 на выбранную строку). В настоящее время вместо диодов ставят МОП-транзисторы.

В табл. 26.1 приведено состояние ПЗУ, схема которого приведена на рис. 26.11.

Таблица 26.1

Состояние простого ПЗУ

Слово Двоичное представление
А0 А1 D1 D2 D3 D4 D5 D6 D7 D8

Как правило, ПЗУ имеют многоразрядную организацию со структурой 2DM . Технологии изготовления самые разнообразные – КМОП, n-МОП, ТТЛ(Ш) и диодные матрицы.

Все ПЗУ можно разделить на следующие группы: программируемые при изготовлении (масочные), с однократным программированием и перепрограммируемые.

В запоминающих устройствах, программируемых при изготовлении (ПЗУ или ROM), информация записывается непосредственно в процессе их изготовления с помощью фотошаблона, называемого маской, на завершающем этапе технологического процесса. Такие ПЗУ называемые масочными, построены на диодах, биполярных или МОП транзисторах.

Область использования масочных ПЗУ – хранение стандартной информации, например знакогенераторы (коды букв латинского и русского алфавита), таблицы типовых функций (синусы, квадратичные функции), стандартное программное обеспечение.

Программируемые постоянные запоминающие устройства (ППЗУ, или PROM ) – ПЗУ с возможностью однократного электрического программирования. Этот вид памяти позволяет пользователю однократно запрограммировать микросхему памяти с помощью программаторов.

Микросхемы ППЗУ построены на запоминающих ячейках с плавкими перемычками. Процесс программирование заключается в избирательном пережигании плавких перемычек с помощью импульсов тока достаточной амплитуды и длительности. Плавкие перемычки включаются в электроды диодов или транзисторов.

На рис. 26.12 приведена схема ППЗУ с плавкими перемычками. Оно изготавливается со всеми диодами и перемычками, т.е. в матрице все «0», а при программировании пережигаются те перемычки, в ячейках которых должны быть логические «1».

Рис. 26.12. Фрагмент схемы ППЗУ

Репрограммируемые постоянные запоминающие устройства (РПЗУ и РПЗУ УФ) – ПЗУ с возможностью многократного электрического программирования. В ИС РПЗУ УФ (EPROM ) старая информация стирается с помощью ультрафиолетовых лучей, для чего в корпусе микросхемы имеется прозрачное окошко; в РПЗУ (EEPROM ) – с помощью электрических сигналов.

Запоминающие ячейки РПЗУ строятся на n -МОП или КМОП транзисторах. Для построения ЗЭ используются различные физические явления хранения заряда на границе между двумя диэлектрическими средами или проводящей и диэлектрической средой.

В первом варианте диэлектрик под затвором МОП транзистора делают из двух слоев: нитрида кремния и двуокиси кремния. Этот транзистор называется МНОП: металл – нитрид кремния – окисел – полупроводник. На границе диэлектрических слоев возникают центры захвата зарядов. Благодаря туннельному эффекту носители заряда могут проходить сквозь тонкую пленку окисла и скапливаться на границе раздела слоев. Этот заряд, являющийся носителем информации, хранимой МНОП-транзистором, приводит к изменению порогового напряжения транзистора. При этом пороговое напряжение возрастает настолько, что рабочее напряжение на затворе транзистора не в состоянии его открыть. Транзистор, в котором заряд отсутствует, легко открывается. Одно из состояний определено как логическая единица, второе – ноль.

Во втором варианте затвор МОП транзистора делают плавающим, т.е. не связанным с другими элементами схемы. Такой затвор заряжается током лавинной инжекции при подаче на сток транзистора высокого напряжения. В результате заряд на плавающем затворе влияет на ток стока, что используется при считывании информации, как и в предыдущем варианте с МНОП транзистором. Такие транзисторы получили название ЛИЗМОП (МОП транзистор с лавинной инжекцией заряда). Так как затвор транзистора окружен изолятором, ток утечки очень мал и информация может храниться достаточно долго (десятки лет).

В РПЗУ с электрическим стиранием над плавающим затвором транзистора размещают второй – управляющий затвор. Подача напряжения на него вызывает рассасывание заряда на плавающем затворе за счет туннельного эффекта. РПЗУ имеют весомые преимущества перед РПЗУ УФ, так как не требуют для перепрограммирования специальных источников ультрафиолетового света. ЗУ с электрическим стиранием практически вытеснили ЗУ с ультрафиолетовым стиранием.

Фрагмент схемы РПЗУ с использованием двухзатворных транзисторов типа ЛИЗМОП показан на рис. 26.13. Запись логического нуля осуществляется в режиме программирования с помощью заряда плавающего затвора. Стирание информации, т.е. разряд плавающего затвора, означает запись логической единицы. В этом случае при подаче сигнала по линии выборки опрашиваемые транзисторы открываются и передают напряжение U ПИТ на линии считывания.

Современные РПЗУ имеют информационную емкость до 4 Мбит при тактовой частоте до 80 МГц.

26.5. Flash -память

Основные принципы работы и тип запоминающих элементов Flash -памяти аналогичны ППЗУ с электрической записью и стиранием информации, построенной на транзисторах с плавающим затвором. Как правило, благодаря своим особенностям, Flash -память выделяют в отдельный класс. В ней производится стирание или всей записанной информации одновременно, или больших блоков информации, а не стирание отдельных слов. Это позволяет исключить схемы управления записью и стиранием отдельных байтов, что дает возможность значительно упростить схему ЗУ и достичь высокого уровня интеграции и быстродействия при снижении стоимости.

Рис.26.13. Фрагмент схемы РПЗУ

Современные тенденции развития электронных приборов требуют постоянного увеличения объема используемой памяти. На сегодня инженеру доступны микросхемы как энергозависимой памяти типа DRAM , которую характеризуют предельно низкая цена за бит и большие уровни интеграции, так и энергонезависимой Flash -памяти, себестоимость которой постоянно снижается и стремится к уровню DRAM .

Потребность в энергонезависимой Flash -памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе Flash -памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в Flash -памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, Flash -память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR (ИЛИ-НЕ) и NAND (И-НЕ). Структура NOR (рис. 26.14, а) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис. 26.14, б) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

Рис.26.14. Структуры на основе NOR (a) и NAND (б)

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR . Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-Flash лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-Flash ниже, чем в других технологиях Flash -памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Более детально особенности микросхем Flash -памяти можно рассмотреть на примере кристаллов серии HY 27xx(08/16)1G 1M фирмы Hynix . На рис. 26.15 показана внутренняя структура и назначение выводов этих приборов.

Микросхема имеет следующие выводы:

I/O 8-15 – вход/выход данных для х16 устройств

I/O 0-7 – вход/выход данных, адресный вход или вход команд для х8 и х16 устройств;

ALE – включение адресной защелки;

CLE – включение защелки команд;

– выбор кристалла;

– разрешение чтения;

– чтение/занят (выход с открытым стоком);

– разрешение записи;

– защита от записи

V CC – напряжение питания;

V SS – общий вывод.

Рис.26.15. Схема внешних выводов (а), назначение выводов (б) и структурная схема (в) Flash -памяти

Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read ). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.

Рис.26.16. Организация массива памяти NАND -структуры

Массив памяти NAND -структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис. 26.16).

Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC ), программных флагов и идентификаторов негодных блоков (Bad Block ) основной области. В 8-битных устройствах страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В 16-ти битных устройствах страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.

Память на основе ячеек NOR имеет сравнительно большие времена стирания и записи, но обладает доступом к каждому биту на чтение. Данное обстоятельство позволяет применять такие микросхемы для записи и хранения программного кода, который не требует частого перезаписывания. Такими применениями могут быть, например, BIOS для встраиваемых компьютеров или ПО для телевизионных приставок.

Свойства NAND-Flash определили область ее применения: карты памяти и иные устройства хранения данных. Сейчас данный тип памяти применяется почти повсеместно в мобильных устройствах, фото- и видеокамерах и т.д. NAND-Flash лежит в основе практически всех типов карт памяти: SmartMedia , MMC , SecureDigital, MemoryStick

Достигнутая в настоящее время информационная емкость Flash -памяти достигает 8ГБит, типовая совокупная скорость программирования и стирания составляет до 33.6 мС / 64 кБ при тактовой частоте до 70 МГц.

Двумя основными направлениями эффективного использования Flash -памяти являются хранение редко изменяемых данных и замена памяти на магнитных дисках. Для первого направления используется Flash -память с адресным доступом, а для второго – файловая память.

26.6. ОЗУ типа FRAM

FRAM – оперативное энергонезависимое ЗУ, сочетающее высокое быстродействие и малую потребляемую мощность, присущие ОЗУ, со свойством хранения данных при отсутствии приложенного напряжения.

В сравнении с EEPROM и Flash -памятью время записи данных в ЗУ этого типа и потребляемая мощность намного меньше (менее 70 нс против нескольких миллисекунд), а ресурс по циклам записи намного выше (не менее 10 11 против 10 5 …10 6 циклов для EEPROM ).

FRAM должна стать в ближайшем будущем самой популярной памятью в цифровых устройствах. FRAM будет отличаться не только быстродействием на уровне DRAM , но и возможностью сохранять данные при отключении энергии. Словом, FRAM может вытеснить не только медленную Flash , но и обычную ОЗУ типа DRAM . Сегодня ферроэлектрическая память находит ограниченное применение, к примеру, в RFID -тэгах. Ведущие компании, в числе которых Ramtron, Samsung, NEC, Toshiba , активно развивают FRAM . Примерно к 2015 году на рынок должны поступить n -гигабайтные модули FRAM .

Указанные свойства FRAM обеспечивает сегнетоэлектрик (перовскит), используемый в качестве диэлектрика накопительного конденсатора ячейки памяти. При этом сегнетоэлектрическое ЗУ хранит данные не только в виде заряда конденсатора (как в традиционных ОЗУ), но и виде электрической поляризации кристаллической структуры сегнетоэлектрика. Сегнетоэлектрический кристалл имеет два состояния, которые могут соответствовать логическим 0 и 1.

Термин FRAM еще не устоялся. Первые FRAM получили название – ферродинамические ОЗУ. Однако в настоящее время в качестве запоминающих ячеек используется сегнетоэлектрик и сейчас FRAM часто называют сегнетоэлектрическим ОЗУ.

Первые FRAM имели 2Т /2С -архитектуру (рис.26.17, а), на основе которой выполняется и большинство современных микросхем сегнетоэлектрической памяти. Ячейка такого типа, в которой каждому биту соответствует индивидуальный опорный бит, позволяет определить разницу зарядов с высокой точностью. А благодаря считыванию дифференциального сигнала исключается влияние разброса параметров конденсаторов ячеек. Позже появились FRAM с архитектурой 1Т /1С (рис.26.17, б). Достоинство микросхем с такой архитектурой – меньшая, чем в обычных схемах площадь ячейки и, следовательно, меньшая стоимость микросхемы в пересчете на единицу информационной емкости.

На рис.26.18 приведена структурная схема сегнетоэлектрического ОЗУ (FRAM ) объемом 1 Мбит и параллельным интерфейсом доступа FM 20L 08 фирмы Ramtron . В таблице 26.1. показаны выводы микросхемы.

FM 20L 08 – энергонезависимая память с организацией 128К×8, которая считывается и записывается подобно стандартному статическому ОЗУ. Сохранность данных обеспечивается в течение 10 лет, при этом, нет необходимости задумываться о надежности хранения данных (неограниченная износостойкость), упрощается проектирование системы и исключается ряд недостатков альтернативного решения энергонезависимой памяти на основе статического ОЗУ с резервным батарейным питанием. Быстрота записи и неограниченное количество циклов перезаписи делают FRAM лидером по отношению к другим типам энергонезависимой памяти.

Рис.26.17. Ячейка памяти типа 2Т /2С (а) и 1Т /1С (б)

Рис.26.18. Структурная схема FRAM FM 20L 08

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Новгородский Государственный университет им. Я. Мудрого

Реферат

На тему «Постоянные запоминающие устройства. Основные характеристики, область применения»

Выполнила: студентка 1 курса гр. 5261

Бронина Ксения

Проверила: Архипова Гелиря Асхатовна

Великий Новгород, 2016 г

1. Понятие постоянного запоминающего устройства

1.1 Основные характеристики ПЗУ

1.2 Классификация ПЗУ

1.2.1 По типу исполнения

1.2.2 По разновидностям микросхем ПЗУ

1.2.3 По способу программирования микросхем (записи в них прошивки)

2. Применение

3. Исторические типы ПЗУ

Литература

1. Понятие постоянного запоминающего устройства

Постоянное запоминающее устройство (ПЗУ, или ROM-- Read Only Memory, память только для чтения) также строится на основе установленных на материнской плате модулей (кассет) и используется для хранения неизменяемой информации: загрузочных программ операционной системы, программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS) и т. д.

К постоянной памяти относят постоянное запоминающее устройство, ПЗУ (в англоязычной литературе - Read Only Memory, ROM, что дословно переводится как "память только для чтения"), перепрограммируемое ПЗУ, ППЗУ (в англоязычной литературе - Programmable Read Only Memory, PROM), и флэш-память (flash memory). Название ПЗУ говорит само за себя. Информация в ПЗУ записывается на заводе-изготовителе микросхем памяти, и в дальнейшем изменить ее значение нельзя. В ПЗУ хранится критически важная для компьютера информация, которая не зависит от выбора операционной системы. Программируемое ПЗУ отличается от обычного тем, что информация на этой микросхеме может стираться специальными методами (например, лучами ультрафиолета), после чего пользователь может повторно записать на нее информацию. Эту информацию будет невозможно удалить до следующей операции стирания информации.

К ПЗУ принято относить энергонезависимые постоянные и «полупостоянные» запоминающие устройства, из которых оперативно можно только считывать информацию, запись информации в ПЗУ выполняется вне ПК в лабораторных условиях или при наличии специального программатора и в компьютере. По технологии записи информации можно выделить ПЗУ следующих типов:

§ микросхемы, программируемые только при изготовлении, -- классические или масочные ПЗУ или ROM;

§ микросхемы, программируемые однократно в лабораторных условиях, -- программируемые ПЗУ (ППЗУ), или programmable ROM (PROM);

§ микросхемы, программируемые многократно, -- перепрограммируемые ПЗУ или erasable PROM (EPROM). Среди них следует отметить электрически перепрограммируемые микросхемы EEPROM (Electrical Erasable PROM), в том числе флеш-память.

1.1 Основные характеристики ПЗУ

Данные в постоянном запоминающем устройстве (ПЗУ) хранятся постоянно. Данные, хранящиеся постоянно, называются энергонезависимыми, что означает, что они сохраняются в ПЗУ даже при выключении питания. Как только данные записаны в ПЗУ, они могут считываться другими устройствами, но новые данные быть записаны в ПЗУ не могут.

ПЗУ наиболее широко используется для хранения так называемой “программы монитора”. Программа монитора это машинная программа, позволяющая пользователю микрокомпьютерной системы просматривать и изменять все функции системы, включая память. Другим широким применением ПЗУ является хранение фиксированных таблиц данных, таких как математические функции, которые никогда не меняются.

Цифровыми компьютерными системами широко используются четыре типа ПЗУ: ПЗУ с масочным программированием, программируемое ПЗУ (ППЗУ), стираемое программируемое ПЗУ (СППЗУ) и электрически программируемое ПЗУ (ЭППЗУ).

1.2 Классификация ПЗУ

1.2.1 По типу исполнения

Массив данных совмещён с устройством выборки (считывающим устройством), в этом случае массив данных часто в разговоре называется «прошивка»:

§ микросхема ПЗУ;

§ Один из внутренних ресурсов однокристальной микро ЭВМ (микроконтроллера), как правило FlashROM.

Массив данных существует самостоятельно :

§ компакт-диск;

§ перфокарта;

§ перфолента;

§ штрих-коды;

§ монтажные «1» и монтажные «0».

1.2.2 По разновидностям микросхем ПЗУ

По технологии изготовления кристалла:

§ RO M англ. read-only memory - постоянное запоминающее устройство, масочное ПЗУ, изготавливается фабричным методом. В дальнейшем нет возможности изменить записанные данные.

Рисунок 1. Масочное ПЗУ

§ PRO M англ. programmable read-only memory -- программируемое ПЗУ, однократно «прошиваемое» пользователем.

Рисунок 2. Программируемое ПЗУ

§ EPROM англ. erasable programmable read-only memory - перепрограммируемое/репрограммируемое ПЗУ (ПППЗУ/РПЗУ)). Например, содержимое микросхемы К573РФ1 стиралось при помощи ультрафиолетовой лампы. Для прохождения ультрафиолетовых лучей к кристаллу в корпусе микросхемы было предусмотрено окошко с кварцевым стеклом.

Рисунок 3. Перепрограммируемое ПЗУ

§ EEPROM англ. electrically erasable programmable read-only memory - электрически стираемое перепрограммируемое ПЗУ). Память такого типа может стираться и заполняться данными несколько десятков тысяч раз. Используется в твердотельных накопителях. Одной из разновидностей EEPROM является флеш-память (англ. flash memory).

Рисунок 4. Стираемое ПЗУ

§ ПЗУ на магнитных доменах, например К1602РЦ5, имело сложное устройство выборки и хранило довольно большой объём данных в виде намагниченных областей кристалла, при этом не имея движущихся частей (см. Компьютерная память). Обеспечивалось неограниченное количество циклов перезаписи.

§ NVRAM, non-volatile memory -- «неразрушающаяся» память, строго говоря, не является ПЗУ. Это ОЗУ небольшого объёма, конструктивно совмещённое с батарейкой. В СССР такие устройства часто назывались «Dallas» по имени фирмы, выпустившей их на рынок. В NVRAM современных ЭВМ батарейка уже конструктивно не связана с ОЗУ и может быть заменена.

По виду доступа :

§ С параллельным доступом (parallel mode или random access): такое ПЗУ может быть доступно в системе в адресном пространстве ОЗУ. Например, К573РФ5;

§ С последовательным доступом: такие ПЗУ часто используются для однократной загрузки констант или прошивки в процессор или ПЛИС, используются для хранения настроек каналов телевизора, и др. Например, 93С46, AT17LV512A.

1.2.3 По способу программирования микросхем (записи в них прошивки)

§ Непрограммируемые ПЗУ;

§ ПЗУ, программируемые только с помощью специального устройства -- программатора ПЗУ (как однократно, так и многократно прошиваемые). Использование программатора необходимо, в частности, для подачи нестандартных и относительно высоких напряжений (до +/- 27 В) на специальные выводы.

§ Внутрисхемно (пере)программируемые ПЗУ (ISP, in-system programming) -- такие микросхемы имеют внутри генератор всех необходимых высоких напряжений, и могут быть перепрошиты без программатора и даже без выпайки из печатной платы, программным способом.

запоминающий микросхема программирование моноскоп

2. Применение

В постоянную память часто записывают микропрограмму управления техническим устройством: телевизором, сотовым телефоном, различными контроллерами, или компьютером (BIOS или OpenBoot на машинах SPARC).

BootROM -- прошивка, такая, что если её записать в подходящую микросхему ПЗУ, установленную в сетевой карте, то становится возможна загрузка операционной системы на компьютер с удалённого узла локальной сети. Для встроенных в ЭВМ сетевых плат BootROM можно активировать через BIOS.

ПЗУ в IBM PC-совместимых ЭВМ располагается в адресном пространстве с F600:0000 по FD00:0FFF

3. Исторические типы ПЗУ

Постоянные запоминающие устройства стали находить применение в технике задолго до появления ЭВМ и электронных приборов. В частности, одним из первых типов ПЗУ был кулачковый валик, применявшийся в шарманках, музыкальных шкатулках, часах с боем.

С развитием электронной техники и ЭВМ возникла необходимость в быстродействующих ПЗУ. В эпоху вакуумной электроники находили применение ПЗУ на основе потенциалоскопов, моноскопов, лучевых ламп. В ЭВМ на базе транзисторов в качестве ПЗУ небольшой ёмкости широко использовались штепсельные матрицы. При необходимости хранения больших объёмов данных (для ЭВМ первых поколений -- несколько десятков килобайт) применялись ПЗУ на базе ферритовых колец (не следует путать их с похожими типами ОЗУ). Именно от этих типов ПЗУ и берёт своё начало термин «прошивка» -- логическое состояние ячейки задавалось направлением навивки провода, охватывающего кольцо. Поскольку тонкий провод требовалось протягивать через цепочку ферритовых колец для выполнения этой операции применялись металлические иглы, аналогичные швейным. Да и сама операция наполнения ПЗУ информацией напоминала процесс шитья.

Литература

Угрюмов Е. П. Цифровая схемотехника БХВ-Петербург (2005) Глава 5.

Размещено на Allbest.ru

Подобные документы

    Иерархия запоминающих устройств ЭВМ. Микросхемы и системы памяти. Оперативные запоминающие устройства. Принцип работы запоминающего устройства. Предельно допустимые режимы эксплуатации. Увеличение объема памяти, разрядности и числа хранимых слов.

    курсовая работа , добавлен 14.12.2012

    Запоминающие устройства: винчестеры, дискеты,стримеры, флэш-карты памяти, MO-накопители, оптические: CD-R, CD-RW, DVD-R, DVD-RW, и новейшие запоминающие устройства. Информацию необходимо сохранять на носителях, не зависящих от наличия напряжения.

    реферат , добавлен 01.03.2006

    Понятие информации, ее измерение, количество и качество информации. Запоминающие устройства: классификация, принцип работы, основные характеристики. Организация и средства человеко-машинного интерфейса, мультисреды и гиперсред. Электронные таблицы.

    отчет по практике , добавлен 09.09.2014

    Проектирование программатора микросхем AT17C010, обоснование режимов функционирования узлов микроконтроллера, аппаратных средств, достаточности программных ресурсов. Принципиальная схема устройства, рекомендации по разработке диагностических средств.

    курсовая работа , добавлен 19.12.2010

    Проектирование элементов микросхем ПЗУ и ОЗУ с помощью приложения MS Visio 2010. Деление и расширение адресного пространства. Расчет дополнительного оперативного запоминающего устройства и проверка компонентов системы на электрическое взаимодействие.

    курсовая работа , добавлен 08.11.2014

    Запоминающие устройства компьютера. Создание системы памяти. Характеристика микросхем динамических запоминающих устройств. Выполнение арифметических, логических или служебных операций. Ярусно-параллельная форма алгоритма. Степень и уровни параллелизма.

    презентация , добавлен 28.03.2015

    Микропроцессорный комплект cерии КР580 - набор микросхем. Основные элементы КР580ВМ80А - 8-разрядный микропроцессора, полный аналог микропроцессора Intel i8080. Применение микропроцессоров в игровых автоматах. Версии выпуска микросхем, и их применение.

    реферат , добавлен 18.02.2010

    Cравнение двух важнейших характеристик - емкость памяти и ее быстродействие. Регистры общего назначения. Функции оперативного запоминающего устройства. Наиболее распространенная форма внешней памяти - жесткий диск. Три основных типа оптических носителей.

    реферат , добавлен 15.01.2015

    Основные составляющие системного блока. Назначение материнской платы. Базовая система ввода-вывода – Bios. Понятие периферийного устройства. Запоминающие устройства и их виды. Открытая архитектура в устройстве ПК. Устройства для ввода и вывода данных.

    реферат , добавлен 18.12.2009

    Расчет статического модуля оперативной памяти и накопителя. Построение принципиальной схемы и временной диаграммы модуля оперативного запоминающего устройства. Проектирование арифметико-логического устройства для деления чисел с фиксированной точкой.

ПОСТОЯННАЯ ПАМЯТЬ (ПЗУ)

Существует тип памяти, который хранит данные без электрического тока, именно постоянная память ROM (Read Only Memory), или иногда ее называют энергонезависимой памятью, применяемую для хранения системных и дополнительных программ, предназначенных для постоянного использования микропроцессором, которая не позволяет изменять или стирать информацию.

ПЗУ (постоянное запоминающее устройство) - микросхема на материнской плате, в которой находятся программы, данные, занесенные при изготовлении компьютера и используемые для внутреннего тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память. Совокупность этих микропрограмм называется BIOS (Basic Input-Output System) - базовая система ввода-вывода. В BIOS содержится программа настройки конфигурации компьютера (SETUP). Она позволяет установить некоторые характеристики устройств компьютера (тип видеоконтроллера, жестких дисков и дисководов для дискет, часто также режимы работы с оперативной памятью, запрос пароля при начальной загрузке).

Данные записываются в ПЗУ в процессе производства. Для этого изготавливается трафарет с определенным набором битов, который накладывается на фоточувствительный материал, а затем части поверхности вытравливаются.

Различают:

ППЗУ (программируемые ПЗУ) были разработаны в конце 70-х годов компания под названием Texas Instruments. Другими словами в условиях эксплуатации есть возможность программировать. Такие ПЗУ обычно содержат массив крошечных перемычек. В которой есть возможность, пережечь определенную перемычку, выбрав нужные строку и столбец, а затем приложить высокое напряжение к определенному выводу микросхемы.

EPROM (стираемое программируемое ПЗУ), позволяют при использование специального аппарата, программировать в условиях эксплуатации и стирать информацию. Для этого чип подвергают воздействию сильного ультрафиолетового света с определенной длиной волны, в течении 15 минут.

EEPROM (Электронно - перепрограммированные ПЗУ), также стираемое ППЗУ, но в отличие от ППЗУ они позволяют перепрограммировать путем приложения импульсов и не требуют специальных дополнительных устройств. Но работают в 10 раз медленнее с гораздо меньшей емкостью и цена дороже.

Флеш-память, стирается и записывается по блокам. Производится на печатных платах, имеет емкость до нескольких десятков мегабайт.

Устанавливаемые на системной плате ПК модули и кассеты ПЗУ имеют емкость, как правило, не превышающую 128 Кбайт. Быстродействие у постоянной памяти меньшее, чем у оперативной, поэтому для повышения производительности содержимое ПЗУ копируется в ОЗУ, и при работе непосредственно используется только эта копия, называемая также теневой памятью ПЗУ (Shadow ROM).

«В настоящее время в ПК используются «полупостоянные», перепрограммируемые запоминающие устройства -- флэш-память. Модули, или карты, флэш-памяти могут устанавливаться прямо в разъемы материнской платы и имеют следующие параметры: емкость до 512 Мбайт (в ПЗУ BIOS используются до 128 Кбайт), время обращения по считыванию 0,035 -- 0,2 мкс, время записи одного байта 2 -- 10 мкс. Флэш-память -- энергонезависимое запоминающее устройство. Примером такой памяти может служить память NVRAM -- Non Volatile RAM со скоростью записи 500 Кбайт/с. Обычно для перезаписи информации необходимо подать на специальный вход флэш-памяти напряжение программирования (12 В), что исключает возможность случайного стирания информации. Перепрограммирование флэш-памяти может выполняться непосредственно с гибкого диска или с клавиатуры ПК при наличии специального контроллера, либо с внешнего программатора, подключаемого к ПК. Флэш-память бывает весьма полезной как для создания весьма быстродействующих, компактных, альтернативных НМД запоминающих устройств -- «твердотельных дисков», так и для замены ПЗУ, хранящего программы BIOS, позволяя прямо с «дискеты» обновлять и заменять эти, программы на более новые версии при модернизации ПК» [Электронный ресурс] URL:http://library.tuit.uz/skanir_knigi/book/vich_sistemi/viches_sist_2.htm (Дата обращения 15.05.2013)..

Сравнительная характеристика ОЗУ и ПЗУ

Таблица 2 Сравнительная характеристика.

«Физически для построения запоминающего устройства типа RАМ используют микросхемы динамической и статической памяти, для которых сохранение бита информации означает сохранение электрического заряда (именно этим объясняется энергозависимость всей оперативной памяти, то есть потеря при выключении компьютера всей информации, хранимой в ней).

Оперативная память физически выполняется на элементах динамической RАМ, а для согласования работы сравнительно медленных устройств (в нашем случае динамической RАМ) со сравнительно быстрым микропроцессором используют функционально для этого предназначенную кэш-память, построенную из ячеек статической RАМ. Таким образом, в компьютерах присутствуют одновременно оба вида RАМ. Физически внешняя кэш-память также реализуется в виде микросхем на платах, которые вставляются в соответствующие слоты на материнской плате» Николаева В.А. Информатика и информационные технологии. [Электронный ресурс] URL: http://www.junior.ru/wwwexam/pamiat/pamiat4.htm (дата обращение: 15.05.2013).

Важно знать разницу между ОЗУ и ПЗУ. Если вы понимаете эту разницу вы сможете лучше понять, как работает компьютер. ОЗУ и ПЗУ, как различные типы запоминающих устройств, и они оба хранят данные в компьютере. В этой статье мы расскажем вам об основных различиях между этими двумя воспоминаниями, а именно ОЗУ и ПЗУ.

Random Access Memory (RAM)

Оперативная память представляет собой тип памяти , которая позволяет получить доступ к хранимым данным в любой последовательности и из любого физического расположения в памяти. RAM могут быть считаны и записаны с новыми данными. Основное преимущество оперативной памяти является то, что она занимает почти такое же время в доступе в него любые данные, независимо от места нахождения данных. Это делает RAM очень быстрой памяти. Компьютеры могут читать из памяти очень быстро, а также они могут записывать новые данные в оперативной памяти очень быстро.

Как RAM выглядит?

Коммерчески доступные обычные чипы памяти могут быть легко подключен в и подключен выход материнской платы компьютера. На следующем рисунке показаны чипы памяти.

Постоянное запоминающее устройство (ПЗУ)

Как следует из названия, данные записываются в ПЗУ только один раз и навсегда. После этого, данные могут быть прочитаны только с помощью компьютеров. Только для чтения памяти часто используется, чтобы установить постоянные инструкции в компьютер. Эти инструкции никогда не изменится. Чипы ROM хранить базовую систему ввода / вывода (BIOS) компьютера. На следующем рисунке показан коммерчески доступный чип ROM BIOS.

Разница между ОЗУ и ПЗУ

В следующей таблице перечислены основные различия между произвольным доступом и только для чтения памяти.

Сравнительная таблица ОЗУ и ПЗУ
ОЗУ ПЗУ
1. Подставки для RANDON-доступа памяти Подставки для памяти только для чтения
2. RAM для чтения и записи в память Обычно ПЗУ постоянное запоминающее устройство и оно не может быть перезаписана. Тем не менее, СППЗУ может быть перепрограммирован
3. RAM быстрее ROM относительно медленнее, чем RAM
4. Оперативная память представляет собой энергонезависимое запоминающее устройство. Это означает, что данные в оперативной памяти будут потеряны, если блок питания отсечку ROM является постоянной памяти. Данные в ПЗУ будет оставаться как есть, даже если мы удалим источника питания
5. Есть в основном два типа оперативной памяти; статическая оперативная память и динамическое ОЗУ Есть несколько типов ROM; Стираемое программируемое ПЗУ, программируемом ПЗУ, СППЗУ и т.д.
6. RAM хранит все приложения и данные, когда компьютер работает в нормальном режиме ROM обычно хранятся инструкции, необходимые для запуска (загрузки) компьютера
7. Цена ОЗУ сравнительно высока чипы ROM сравнительно дешевле
8. чипы памяти больше по размеру микросхемы ROM меньше по размеру
9. Процессор может непосредственно получить доступ к содержимому памяти Содержание ROM, как правило, сначала переносится в оперативную память, а затем доступ к процессору. Это делается для того, чтобы иметь возможность получить доступ к содержимому диска с более высокой скоростью.
10. RAM часто устанавливается с большим объемом памяти. Емкость запоминающего устройства ПЗУ, установленного в компьютере намного меньше, чем RAM

ОЗУ и ПЗУ являются неотъемлемой частью современной компьютерной системы. Вы хотите знать, когда диск работает и когда RAM находится в игре? Ну, когда вы переключаетесь на вашем компьютере, вы можете увидеть черный экран с каким-то белым текстом. Этот текст из ПЗУ. Инструкции ПЗУ управления компьютером для первого несколько секунд, когда вы включить его. В этот период, как инструкции " , как читать с жесткого диска", "как печатать на экране" загружаются из ПЗУ. После того, как компьютер способен делать эти основные операции, операционная система (Windows / Linux / OSX и т.д.) для чтения с жесткого диска и загружается в оперативную память. Следующее видео объясняет RAM против концепции ROM дополнительно.

При открытии программы, как Microsoft Word , программа загружается с жесткого диска компьютера в оперативную память.

Мы надеемся, что эта статья помогла вам понять основные различия между ОЗУ и ПЗУ. Если у вас есть какие-либо вопросы, связанные с этой темой, пожалуйста, не стесняйтесь задавать в разделе комментариев. Мы постараемся помочь вам. Благодарим Вас за использование TechWelkin!

Все постоянные запоминающие устройства (ПЗУ) можно разделить на следующие группы:

● программируемые при изготовлении (обозначают как ПЗУ или ROM);

● с однократным программированием, позволяющим пользователю однократно изменить состояние матрицы памяти электрическим путем по заданной программе (обозначают как ППЗУ или PROM);

● перепрограммируемые (репрограммируемые), с возможностью многократного электрического перепрограммирования, с электрическим или ультрафиолетовым стиранием информации (обозначают как РПЗУ или RPROM).

Для обеспечения возможности объединения по выходу при наращивании памяти все ПЗУ имеют выходы с тремя состояниями или открытые коллекторные выходы.

{xtypo_quote}В ППЗУ накопитель построен на запоминающих ячейках с плавкими перемычками, изготовленными из нихрома или других тугоплавких материалов. Процесс записи состоит в избирательном пережигании плавких перемычек. {/xtypo_quote}
В РПЗУ запоминающие ячейки строятся на основе МОП-технологий. Используются различные физические явления хранения заряда на границе между двумя различными диэлектрическими средами или проводящей и диэлектрической средой.

В первом случае диэлектрик под затвором МОП-транзистора делают из двух слоев: нитрида кремния и двуокиси кремния (SiN 4 — SiO 2). Было обнаружено, что в сложной структуре SiN 4 — SiO 2 при изменении электрического напряжения возникает гистерезис заряда на границе раздела двух слоев, что и позволяет создавать запоминающие ячейки.

Во втором случае основой запоминающей ячейки является лавинно-инжекционный МОП-транзистор с плавающим затвором (ЛИПЗ МОП). Упрощенная структура такого транзистора приведена на рис. 3.77.
В лавинно-инжекционном транзисторе с плавающим затвором при достаточно большом напряжении на стоке происходит обратимый лавинный пробой диэлектрика, и в область плавающего затвора инжектируются носители заряда. Поскольку плавающий затвор окружен диэлектриком, то ток утечки мал и хранение информации обеспечивается в течение длительного промежутка времени (десятки лет). При подаче напряжения на основной затвор происходит рассасывание заряда за счет туннельного эффекта, т.е. стирание информации.

Приведем некоторые характеристики ПЗУ (табл. 3.1).

Промышленность выпускает большое количество микросхем ПЗУ. Приведем в качестве примера две микросхемы ПЗУ (рис. 3.78).



На схемах использованы следующие обозначения: A i — адресные входы; D i — информационные выходы; CS — выбор микросхемы; СЕ — разрешение выхода.

Микросхема К573РФ5 — это репрограммируемое ПЗУ (РПЗУ) с ультрафиолетовым стиранием, имеющее структуру 2Кх8. По входу и выходу эта микросхема совместима с ТТЛ-структурами. Микросхема К556РТ5 — это однократно программируемая ПЗУ, выполнена на основе ТТЛШ-структур, по входу и выходу совместима с ТТЛ-структурами, имеющая структуру 512бит х8.